1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
| #include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define sqz main #define ll long long #define rep(i, a, b) for (int i = (a); i <= (b); i++) #define per(i, a, b) for (int i = (a); i >= (b); i--) #define Rep(i, a, b) for (int i = (a); i < (b); i++) #define travel(i, u) for (int i = head[u]; ~i; i = edge[i].next)
const ll INF = 1e9, Mo = 998244353; const int N = 100, M = 50000; const double eps = 1e-6; namespace slow_IO { ll read() { ll x = 0; int zf = 1; char ch = getchar(); while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar(); if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf; } void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0'); } } using namespace slow_IO;
int X[6][N + 5], Prime[6] = {0, 11261, 14843, 19997, 21893, 22877}, F[6][M + 5], Ans[M + 5]; int n, m, num = 5, ans = 0; char st[M + 5]; int Calc(int x, int cnt) { int now = X[cnt][0], mi = 1; rep(i, 1, n) { mi = mi * x % Prime[cnt]; now = (now + X[cnt][i] * mi) % Prime[cnt]; } return now == 0; }
int sqz() { n = read(), m = read(); rep(i, 0, n) { scanf("%s", st); int len = strlen(st), flag; if (st[0] == '-') flag = 0; else flag = st[0] - '0'; rep(j, 1, num) { X[j][i] = flag; Rep(k, 1, len) X[j][i] = (X[j][i] * 10 + st[k] - '0') % Prime[j]; if (!flag) X[j][i] = -X[j][i]; } } rep(i, 1, num) Rep(j, 0, Prime[i]) F[i][j] = Calc(j, i); rep(i, 1, m) { int flag = 1; rep(j, 1, num) if (!F[j][i % Prime[j]]) { flag = 0; break; } if (flag) Ans[++ans] = i; } printf("%d\n", ans); rep(i, 1, ans) printf("%d\n", Ans[i]); return 0; }
|