1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
| #include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define sqz main #define ll long long #define rep(i, a, b) for (int i = (a); i <= (b); i++) #define per(i, a, b) for (int i = (a); i >= (b); i--) #define Rep(i, a, b) for (int i = (a); i < (b); i++) #define travel(i, u) for (int i = head[u]; ~i; i = edge[i].next)
const ll INF = 1e9, Mo = 998244353; const int N = 300000; const double eps = 1e-6; namespace slow_IO { ll read() { ll x = 0; int zf = 1; char ch = getchar(); while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar(); if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf; } void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0'); } } using namespace slow_IO;
int X[N + 5]; struct LinkCutTree { int Fa[N + 5], rev[N + 5], Son[N + 5][2], Size[N + 5], Stack[N + 5], top; inline void up(int u) { Size[u] = Size[Son[u][0]] + Size[Son[u][1]] + 1; } inline void down(int u) { if (!rev[u]) return; rev[Son[u][0]] ^= 1, rev[Son[u][1]] ^= 1, rev[u] ^= 1; swap(Son[u][0], Son[u][1]); } inline int isroot(int u) { return (Son[Fa[u]][0] != u && Son[Fa[u]][1] != u); }
inline void Rotate(int x) { int y = Fa[x], z = Fa[y]; int l = Son[y][1] == x, r = l ^ 1; if (!isroot(y)) Son[z][Son[z][1] == y] = x; Son[y][l] = Son[x][r], Fa[Son[x][r]] = y; Son[x][r] = y, Fa[y] = x, Fa[x] = z; up(y); up(x); } inline void Splay(int x) { Stack[top = 1] = x; for (int y = x; !isroot(y); y = Fa[y]) Stack[++top] = Fa[y]; per(i, top, 1) down(Stack[i]); while (!isroot(x)) { int y = Fa[x], z = Fa[y]; if (!isroot(y)) { if ((Son[y][1] == x) ^ (Son[z][1] == y)) Rotate(x); else Rotate(y); } Rotate(x); } }
inline void Access(int u) { for (int last = 0; u; last = u, u = Fa[u]) Splay(u), Son[u][1] = last, up(u); } inline void Make_Root(int u) { Access(u); Splay(u); rev[u] ^= 1; } inline int Find_Root(int u) { Access(u), Splay(u); while (Son[u][0]) u = Son[u][0]; return u; }
inline void Split(int x, int y) { Make_Root(x), Access(y), Splay(y); } inline void Link(int x, int y) { Make_Root(x); if (Find_Root(y) == x) return; Fa[x] = y; } inline void Cut(int x, int y) { Make_Root(x); if (Find_Root(y) != x || Fa[x] != y || Son[x][1]) return; Fa[x] = Son[y][0] = 0; } }LCT;
int sqz() { int n = read(); rep(i, 1, n) X[i] = read(); rep(i, 1, n) LCT.Link(i, i + X[i] <= n ? i + X[i] : n + 1); int q = read(); while (q--) { int op = read(); if (op == 1) { int x = read() + 1; LCT.Split(x, n + 1); printf("%d\n", LCT.Size[n + 1] - 1); } else { int x = read() + 1, y = read(); LCT.Cut(x, x + X[x] <= n ? x + X[x] : n + 1); LCT.Link(x, x + y <= n ? x + y : n + 1); X[x] = y; } } }
|